

Axialkolben-Verstellpumpe A1VO Baureihe 10

RD 92650

Ausgabe: 08.2015 Ersetzt: 02.2013

- ► Für Load-Sensing-Systeme in kleineren Arbeitsmaschinen
- ▶ Nenngrößen 18, 28, 35
- Nenndruck 250 bar
- ► Höchstdruck 280 bar
- Offener Kreislauf

Merkmale

- Verstellpumpe mit Axialkolben-Triebwerk in Schrägscheibenbauart für hydrostatische Antriebe im offenen Kreislauf
- ► Der Volumenstrom ist proportional zur Antriebsdrehzahl und dem Verdrängungsvolumen.
- ► Durch die Verstellung der Schrägscheibe kann der Volumenstrom stufenlos geändert werden.
- ► Signifikante Kraftstoffeinsparung bis zu 15% im Vergleich zu Konstantsystemen
- ► Optimierter Wirkungsgrad, dadurch gleiche Leistung bei weniger Verbrauch
- ► Erhöhte Lebensdauer im Vergleich zu Zahnradpumpen
- ► Kompakte Bauweise durch integrierten Regler
- Gut anpassbares Verstellgeräteprogramm für alle wichtigen Anwendungen
- ► Durch die Verstellung der Schrägscheibe ist eine stufenlose Volumenstromänderung möglich
- ▶ Niedriges Betriebsgeräusch
- ► Hohe Leistungsdichte
- Gutes Ansaugverhalten
- Hohe Flexibilität durch wechselbare Durchtriebsadapter

Inhalt Typenschlüssel 2 Druckflüssigkeiten 4 Wellendichtring 5 Betriebsdruckbereich 6 Technische Daten 7 DR/DN - Druckregler 9 D3/D4 - Druckregler mit Übersteuerung 10 DRSO/DNSO - Druckregler mit Load-Sensing 11 Abmessungen Nenngröße 18 und Nenngröße 28 12 14 Abmessungen Nenngröße 35 Abmessungen Durchtriebe 16 Übersicht Anbaumöglichkeiten 17 Kombinationspumpen A1VO + A1VO 18 Stecker für Magnete 19 Einbauhinweise 20 Projektierungshinweise 22 Sicherheitshinweise 22

Typenschlüssel

0:	L 02	03	04	05	06	07	08		09	10	11	12	13	14	15	16	17		18
A1			<u> </u>		2	<u> </u>	0	<i></i>	10	<u> </u>	T	V	T		T		00	_	T 0
	lkolben	l oinhoit	 							ļ	<u> </u>		<u> </u>		Į.				1 -
			nbauart,	verstell	bar, Ne	nndruck	250 b	ar, Höc	hstdruc	k 280 k	oar								A1V
Betr	iebsart																		•
02	Pumpe,	offene	r Kreislau	uf	,														0
Nen	ngröße ((NG)																	
			s Verdrän	gungsvo	olumen,	siehe t	echniso	he Dat	en Seit	e 7						018	028	035]
Reg	el- und \	/erstel	leinrichtu	ıng												018	028	035	_
04	Druckre	gler	Einstell	bereich	100 bis	250 ba	ır									•	0	•	DR
			mit Loa	d-Sensi	ng											•	0	•	DRS0
			Einstell	bereich	20 bis	100 bar										•	0	•	DN
			mit Loa	d-Sensi	ng											•	0	•	DNS0
			mit Übe	rsteuer	ung ele	ktrisch	propor	tional, ı	negative	e Kennu	ıng ²⁾		U = 12 \	/		•	0	•	D3
												_	U = 24 \	/		•	0	•	D4
Reg	erauf-/	Anbau																	
05	Aufgeba	aut ²⁾														0	0	0	Α
	Cartridg	ge														•	0	•	С
Eins	tellung																		
06	Einstell	bar																	2
Stec	ker für	Magne	te¹⁾ (sieh	e Seite	19)														
			ohne Ma			ydraulis	chen V	erstellu	ngen)							•	0	•	0
	DEUTSO	CH-Stee	ker ange	gossen,	2-polig	g, ohne l	_öschd	iode								•	0	•	Р
Zusa	atzfunkt	ion																	-
80	Ohne Zı	usatzfu	nktion																0
Bau	reihe																		3
09	Baureih	e 1, Ind	dex 0																10
Aust	führung	der Ar	schluss-	und Be	festigu	ngsgew	inde												
			ssgewind					ISO 11	926,										
	Befestig	gungsg	ewinde b	ei Durch	ntriebsa	usführu	ing me	trisch								•	0	•	В
			sgewinde						9,							•	0	•	м
	Berestig	gungsg	ewinde b	ei Durcr	ntriebsa	ustunru	ing me	risch											
$\overline{}$	nrichtun																		
11	Bei Blic	k auf T	riebwelle									-	rechts						R
													links						L
	tungsw								-										
			utschuk)																V
	auflanso																1	1	
13	SAE J74	14										-	82-2			•	0	0	A2
	100.55												101-2			0	0	•	B2
	ISO 301	.9-2											80-2			0	0	0	K2

¹⁾ Stecker für andere elektrische Bauteile können abweichen

²⁾ Nur D3 und D4 Regler zur Zeit als aufgebaute Version erhältlich. Alle weiteren Regler sind grundsätzlich Cardridgelösungen.

01	02	03	04	05	06	07	08		09	10	11	12	13	14	15	16	17		18
A1V	0				2		0	/	10			V					00	-	0

Tri	ebwelle (zulässige Eingangsdrehmomente siehe Seite 8)	018	028	035	
14	Zahnwelle ANSI B92.1a 5/8 in 9T 16/32DP	0	0	-	S2
	3/4 in 11T 16/32DP	0	0	-	S3
	7/8 in 13T 16/32 DP ³⁾	•	0	•	S4
	1 in 15T 16/32DP	-	-	•	S5

Anschluss für Arbeitsleitung

15	Gewindeanschlüsse B und S, seitlich, gegenüberliegend	•	0	•	1
	Gewindeanschlüsse B und S, hinten, nicht für Durchtrieb	•	0	0	9

Durchtriebe (Anbaumöglichkeiten siehe Seite 17)

6	Flansch SAE J	744		Nabe für Zahnwe	elle ⁴⁾]			
	Durchmesser	Anbau ⁵⁾	Bezeichnung	Durchmesser		Bezeichnung	018	028	035	
Ī	Ohne Durchtri	eb								0000
	82-2 (A)	0-0	A2	5/8 in	9T 16/32 DP	S2	•	0	•	A2S2
				3/4 in	11T 16/32 DP	S3	•	0	•	A2S3
				7/8 in	13T 16/32 DP	S4	•	0	•	A2S4
	101-2 (B)	0-0	B2	7/8 in	13T 16/32 DP	S4	•	0	•	B2S4
				1 in	15T 16/32 DP	S5	-	-	•	B2S5
	Mit angebaute	r Hilfspumpe			Verdrängungsvo	olumen				Hww
					xx cm ³ (z. B. H2	200 bei 20 cm³)	-	0	0	Hxx0

Reduzierung geometrisches Verdrängungsvolumen

Standard-/Sonderausführung

40 01 1 1 5"				_
18 Standardausführung 0	1	8 Standardausführung	0	

Hinweise

Beachten Sie die Projektierungshinweise auf Seite 22.

³⁾ Bei Nenngröße 35 nicht für Durchtrieb

⁴⁾ Nach ANSI B92.1a

⁵⁾ Anordnung Befestigungsbohrungen bei Blick auf Durchtrieb, mit Anschluss für Arbeitsleitung B rechts.

Druckflüssigkeiten

Die Verstellpumpe A1VO ist für den Betrieb mit Mineralöl HLP nach DIN 51524 konzipiert.

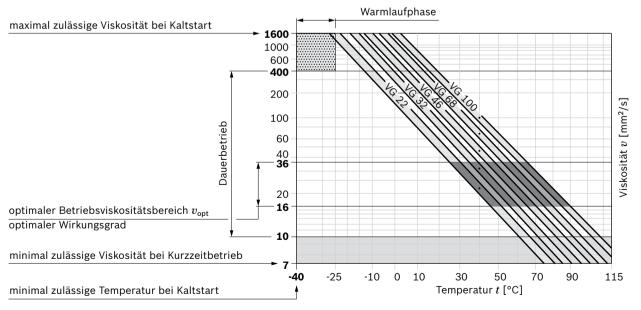
Anwendungshinweise und Anwendungsforderungen zu den Druckflüssigkeiten entnehmen sie vor der Projektierung den folgenden Datenblättern:

▶ 90220: Hydraulikflüssigkeiten auf Basis von Mineralölen und artverwandten Kohlenwasserstoffen

Erläuterung zur Auswahl der Druckflüssigkeit

Die Auswahl der Druckflüssigkeit soll so erfolgen, dass im Betriebstemperaturbereich die Betriebsviskosität im optimalen Bereich liegt (v_{opt} siehe Auswahldiagramm).

Beachten


An keiner Stelle der Komponente darf die Temperatur höher als 115 °C sein. Für die Viskositätsbestimmung im Lager ist die in der Tabelle angegebene Temperaturdifferenz zu berücksichtigen.

Sind obige Bedingungen bei extremen Betriebsparametern nicht einzuhalten, bitte Rücksprache mit dem zuständigen Bosch Rexroth Mitarbeiter.

Viskosität und Temperatur der Druckflüssigkeiten

	Viskosität	Temperatur	Bemerkung
Kaltstart	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -25 °C	$t \le 3$ min, ohne Last (20 bar $\le p \le 50$ bar), $n \le 1000$ min ⁻¹
zulässige Tempe	raturdifferenz	Δ <i>T</i> ≤ 25 K	zwischen Axialkolbeneinheit und Druckflüssigkeit
Warmlaufphase	ν < 1600 bis 400 mm ² /s	θ = -25 °C	bei $p \le 0.7 \cdot p_{\text{nom}}, n \le 0.5 \cdot n_{\text{nom}}$ und $t \le 15$ min
Dauerbetrieb	v = 400 bis 10 mm ² /s		dies entspricht z.B. bei VG 46 einem Temperaturbereich von +5 °C bis +85 °C (siehe Auswahldiagramm)
		θ = -25 °C bis +90 °C	gemessen am Anschluss ${\bf L}$ zulässigen Temperaturbereich des Wellendichtrings beachten (ΔT = ca. 5 K zwischen Lager/Wellendichtring und Anschluss ${\bf L}$)
	$v_{\rm opt}$ = 36 bis 16 mm ² /s		optimaler Betriebsviskositats- und Wirkungsgradbereich
Kurzzeitbetrieb	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		<i>t</i> < 1 min, <i>p</i> < 0.3 ⋅ <i>p</i> _{nom}

▼ Auswahldiagramm

Filterung der Druckflüssigkeit

Mit feinerer Filterung verbessert sich die Reinheitsklasse der Druckflüssigkeit, wodurch die Lebensdauer der Axialkolbeneinheit zunimmt.

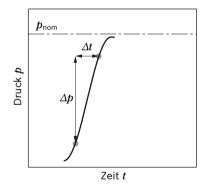
Zur Gewährleistung der Funktionssicherheit der Axialkolbeneinheit ist für die Druckflüssigkeit eine gravimetrische Auswertung zur Bestimmung der Feststoffverschmutzung und Bestimmung der Reinheitsklasse nach ISO 4406 erforderlich. Mindestens einzuhalten ist eine Reinheitsklasse von 20/18/15.

Bei sehr hohen Temperaturen der Druckflüssigkeit (90 °C bis maximal 115 °C) ist mindestens die Reinheitsklasse 19/17/14 nach ISO 4406 erforderlich.

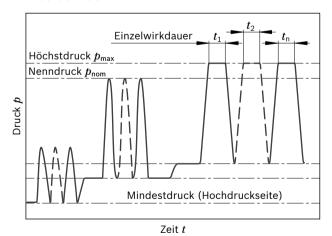
Können obige Klassen nicht eingehalten werden, bitte Rücksprache.

Wellendichtring

Der FKM-Wellendichtring ist für Leckagetemperaturen von -25 °C bis +115 °C zulässig.


Hinweis

Für den Temperaturbereich unter -25 °C sind die Angaben der Tabelle auf Seite 4 zu beachten.


Betriebsdruckbereich

Druck am Anschluss für Arbeitsleitung	В	Definition
Nenndruck p_{nom}	250 bar absolut	Der Nenndruck entspricht dem maximalen Auslegungsdruck.
Höchstdruck p_{max}	280 bar absolut	Der Höchstdruck entspricht dem maximalen Betriebsdruck innerhalb der Einzel-
Einzelwirkdauer	0.05 s	wirkdauer. Die Summe der Einzelwirkdauern darf die Gesamtwirkdauer (maximale
Gesamtwirkdauer	14 h	⁻ Zykluszahl ca. 1 Million) nicht überschreiten.
Mindestdruck $p_{B \text{ abs}}$ (Hochdruckseite)	14 bar ¹⁾ absolut	Mindestdruck auf der Hochdruckseite (B) der erforderlich ist, um eine Beschädigung der Axialkolbeneinheit zu verhindern.
Druckänderungsgeschwindigkeit $R_{A\;max}$	16000 bar/s	Maximal zulässige Druckaufbau- und Druckabbaugeschwindigkeit bei einer Druckänderung über den gesamten Druckbereich.
Druck am Sauganschluss S (Eingang)		
Mindestdruck p_{Smin}	0.8 bar absolut	Mindestdruck am Sauganschluss S (Eingang) der erforderlich ist, um eine Beschädigung der Axialkolbeneinheit zu verhindern. Der Mindestdruck ist abhängig von Drehzahl und Verdrängungsvolumen der Axialkolbeneinheit.
Maximaler Druck $p_{S\;max}$	5 bar absolut	
Leckagedruck am Anschluss L ₁ , L ₂		
Maximaler Druck p_{Lmax}	2 bar absolut	Maximal 0.5 bar höher als Eingangsdruck am Anschluss ${\bf S}$, jedoch nicht höher als $p_{\rm Lmax}$.

lacktriangle Druckänderungsgeschwindigkeit $R_{ m A\ max}$

▼ Druckdefinition

Gesamtwirkdauer = $t_1 + t_2 + ... + t_n$

Hinweis

Betriebsdruckbereich gültig beim Einsatz von Hydraulikflüssigkeiten auf Basis von Mineralölen. Werte für andere Druckflüssigkeiten, bitte Rücksprache.

¹⁾ Bei niedrigerem Druck bitte Rücksprache

Technische Daten

Nenngröße			NG	'	018	035
Verdrängungsvolumer	geometrisch, pro Umdr	ehung	$V_{g\;max}$	cm ³	18	35
			$V_{g\;min}$	cm ³	0	0
Drehzahl maximal ¹⁾²⁾	bei $V_{g\;max}$		n_{nom}	min ⁻¹	3300	3000
	bei $V_{\rm g} \le V_{\rm g max}$		$n_{\sf max}$	min ⁻¹	3300	3000
Volumenstrom	bei n_{nom} und $V_{g\;max}$		$q_{\sf v}$	l/min	59	105
Leistung	bei n_{nom},V_{gmax} und Δp	= 250 bar	P	kW	25	44
Drehmoment	bei $V_{ m g\; max}$ und Δp = 250	bar	T	Nm	72	139
Verdrehsteifigkeit	5/8 in 9T 16/32DP	S2	c	kNm/rad	6.2	_
Triebwelle	3/4 in 11T 16/32DP	S3	с	kNm/rad	9.9	_
	7/8 in 13T 16/32 DP	S4	с	kNm/rad	_	18.6
	1 in 15T 16/32DP	S5	с	kNm/rad	_	22.9
Massenträgheitsmom	ent Triebwerk		J_{TW}	kgm²	0.000505	0.00159
Winkelbeschleunigung	α	rad/s²	6800	5000		
Füllmenge	V	1	0.5	0.6		
Gewicht (ohne Durch	m	kg	11.5	18.4		
Gewicht (mit Durchtr	ieb) ca.		m	kg	12.2	19.8

Ermittlung der	Kenn	gröl	Ben		
Volumenstrom	$q_{\scriptscriptstyle \sf V}$	=	$\frac{V_{g} \times n \times \eta_{v}}{1000}$		[l/min]
Drehmoment	Т	=	$\frac{V_{g} \times \Delta p}{20 \times \pi \times \eta_{hm}}$		[Nm]
Leistung	P	=	$\frac{2 \pi \times T \times n}{60000}$	$= \frac{q_{v} \times \Delta p}{600 \times \eta_{t}}$	[kW]

Legende

 $V_{\rm g}$ Verdrängungsvolumen pro Umdrehung [cm³]

 Δp Differenzdruck [bar]

n Drehzahl [min⁻¹]

 η_{v} Volumetrischer Wirkungsgrad

 $\eta_{
m hm}$ Hydraulisch-mechanischer Wirkungsgrad

 η_t Gesamtwirkungsgrad ($\eta_t = \eta_v \times \eta_{hm}$)

Hinweis

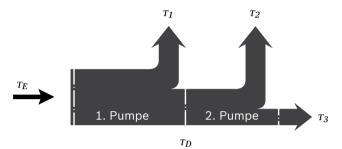
- ► Theoretische Werte, ohne Wirkungsgrade und Toleranzen; Werte gerundet.
- ▶ Ein Überschreiten der Maximal- bzw. Unterschreiten der Minimalwerte kann zum Funktionsverlust, einer Lebensdauerreduzierung oder zur Zerstörung der Axialkolbeneinheit führen. Bosch Rexroth empfiehlt die Überprüfung der Belastung durch Versuch oder Berechnung/Simulation und Vergleich mit den zulässigen Werten.

¹⁾ Die Werte gelten:

[–] für den optimalen Viskositätsbereich von $v_{\rm opt}$ = 36 bis 16 mm²/s

⁻ bei Druckflüssigkeit auf Basis von Mineralölen

⁻ bei einem Druck $p_{\text{saug}} \ge 1$ bar absolut am Sauganschluss **S**.


²⁾ Bei einem Druck $p_{saug} < 1$ bar am Sauganschluss ${\bf S}$ bitte Rücksprache.

³⁾ Der Gültigkeitsbereich liegt zwischen der minimal erforderlichen und der maximal zulässigen Drehzahl. Sie gilt für externe Anregungen (z. B. Dieselmotor 2- bis 8-fache Drehfrequenz, Gelenkwelle 2-fache Drehfrequenz). Der Grenzwert gilt nur für eine Einzelpumpe. Die Belastbarkeit der Anschlussteile muss berücksichtigt werden.

Zulässige Eingangs- und Durchtriebsdrehmomente

Nenngröße	,				018	035	·
Drehmoment bei V	$V_{\rm g\ max}$ und Δp = 250 bar 1)	$T_{\sf max}$	Nm	72	139	,
Eingangsdrehmom	ent an Triebwelle, maxi	mal ²⁾					
	S2	5/8 in	T_{Emax}	Nm	59	_	
	S3	3/4 in	T_{Emax}	Nm	143	-	
	S4	7/8 in	T_{Emax}	Nm	_	-	
	S5	1 in	T_{Emax}	Nm	_	319	
Durchtriebsdrehm	oment maximal ¹⁾		T_{Dmax}	Nm	72	139	

▼ Verteilung der Momente

Drehmoment 1. Pumpe	T_1		
Drehmoment 2. Pumpe	T_2		
Drehmoment 3. Pumpe	T_3		
Eingangsdrehmoment	T_E	=	$T_1 + T_2 + T_3$
	T_E	<	T_{Emax}
Duchtriebsdrehmoment	T_D	=	$T_2 + T_3$
	T_D	<	$T_{D max}$

Hinweis

Bei Axial- und/oder Radialkraftbelastung (Ritzel, Keilriemen) bitte Rücksprache!

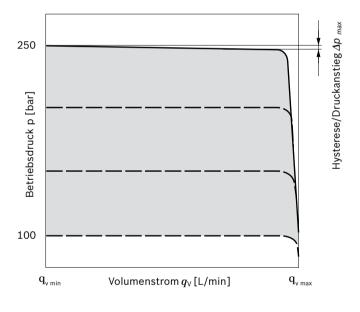
¹⁾ Wirkungsgrad nicht berücksichtigt

²⁾ Für radialkraftfreie Antriebswellen

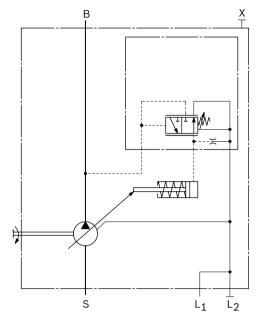
DR/DN - Druckregler

Der Druckregler begrenzt den maximalen Druck am Pumpenausgang innerhalb des Regelbereiches der Verstellpumpe. Die Verstellpumpe fördert nur so viel Druckflüssigkeit, wie von den Verbrauchern benötigt wird. Übersteigt der Betriebsdruck den am Druckventil eingestellten Drucksollwert, regelt die Pumpe in Richtung kleineres Verdrängungsvolumen und die Regelabweichung wird abgebaut.

▶ Grundstellung im drucklosen Zustand: $V_{\rm g\ max}$.


▶ DR

Einstellbereich¹⁾ für Druckregelung 100 bis 250 bar. Standard ist 250 bar

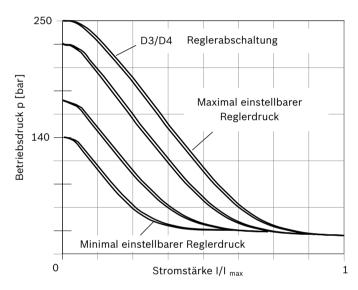

DИ

Einstellbereich¹⁾ für Druckregelung 20 bis 100 bar. Standard ist 100 bar

▼ Kennlinie DR

▼ Schaltplan DR

Reglerdaten


NG	18	35
Hysterese und Wiederholgenauigkeit Δp	maximal 5	bar
Steuerflüssigkeitsverbrauch	maximal c	a. 3 I/min

Um Schäden an der Pumpe und dem System zu vermeiden, darf dieser zulässige Einstellbereich nicht überschritten werden. Niedrigere Werte auf Anftage

D3/D4 - Druckregler mit Übersteuerung

Mit der elektrischen Druckverstellung mit Proportionalmagnet kann der Hochdruck in Abhängigkeit des Magnetstromes stufenlos eingestellt werden. Bei Veränderung des Lastdrucks am Verbraucher wird die Fördermenge der Pumpe so angepasst, dass der vorgegebene Druck wieder erreicht wird. Fällt der Magnetstrom unter den Regelbeginn, geht die Einheit auf den eingestellten maximalen Druck. Dasselbe gilt bei Verlust des Steuersignals.

▼ Strom-Druck-Kennlinie (negative Kennlinie)

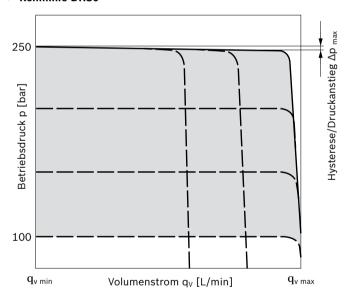
Kennlinie gemessen bei Pumpe im Nullhub. Weitere Informationen auf Anfrage.

DRS0/DNSO - Druckregler mit Load-Sensing

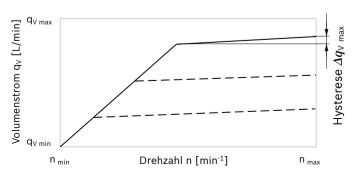
Zusätzlich zur Druckregler-Funktion (DR) arbeitet der Load-Sensing-Regler als lastdruckgeführter Förderstromregler und stimmt das Verdrängungsvolumen der Pumpe auf die vom Verbraucher benötigte Menge ab. Der Load-Sensing-Regler vergleicht den Druck vor der Messblende mit dem nach der Blende und hält den hier auftretenden Druckabfall (Differenzdruck Δp) und damit den Volumenstrom konstant. Das Einschwenken durch den Druck- oder den Förderstromregler hat immer Priorität.

► DRS0

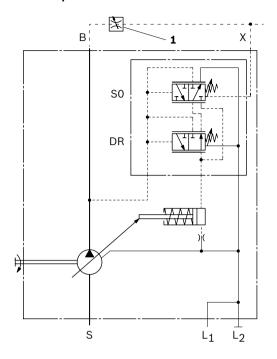
Einstellbereich¹⁾ für Druckregelung 100 bis 250 bar.


▶ DNS0

Einstellbereich¹⁾ für Druckregelung 20 bis 100 bar.


Hinweis

Die Ausführung DRS0/DNSO hat keine Verbindung von **X** zum Tank, daher hat die LS-Entlastung im System zu erfolgen.


▼ Kennlinie DRS0

▼ Kennlinie bei variabler Drehzahl

▼ Schaltplan DRS0

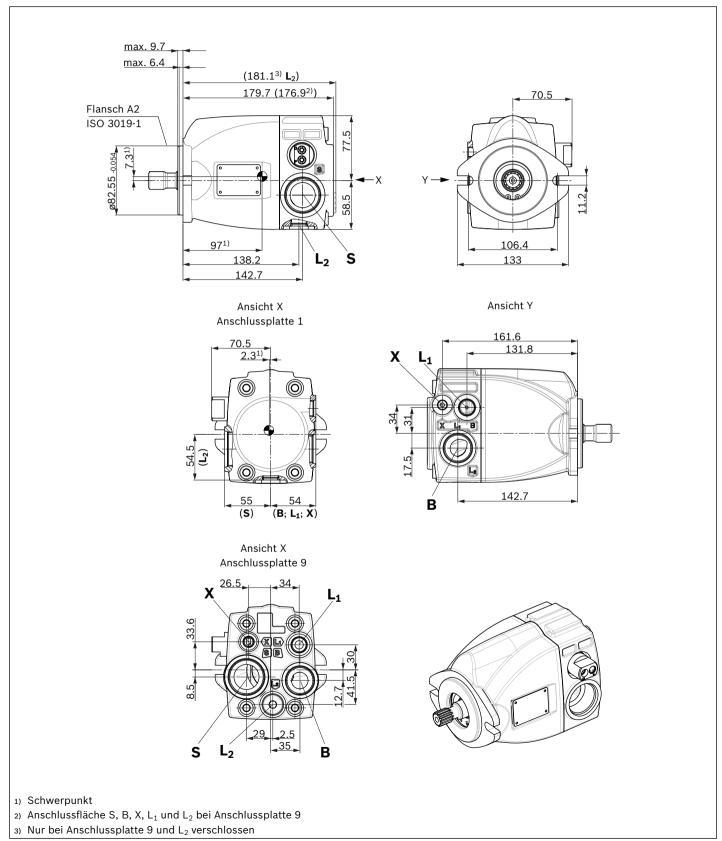
1 Die Messblende (Steuerblock) ist nicht im Lieferumfang enthalten.

Differenzdruck ∆p

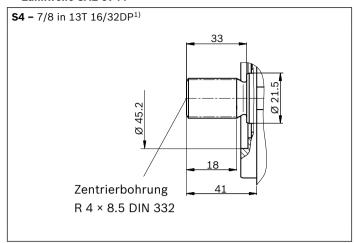
Standardeinstellung: 14 bar. Falls eine andere Einstellung gewünscht wird, bitte im Klartext angeben.

Reglerdaten

Daten für den Druckregler DR siehe Seite 9. Maximale Volumenstromabweichung (Hysterese und Anstieg) gemessen bei Antriebsdrehzahl n = 1500 min^{-1} und t_{fluid} = 50 °C


NG	18	35
Volumenstromabweichung ${\it \Delta q}_{ m Vmax}$	3 l,	/min
Steuerflüssigkeitsverbrauch maximal ca.	4 1,	/min

Um Schäden an der Pumpe und dem System zu vermeiden, darf dieser zulässige Einstellbereich nicht überschritten werden. Niedrigere Werte auf Anftage


Abmessungen Nenngröße 18 und Nenngröße 28

DR, DN - Druckregler / DRS0, DNS0 - Druckregler mit Load-Sensing

Drehrichtung rechts

▼ Zahnwelle SAE J744

Anschluss und Befestigungsgewinde Ausführung "B"

Anschlüsse		Norm ⁴⁾	Größe ³⁾	p _{max abs} [bar] ⁵⁾	Zustand ⁸⁾
В	Arbeitsanschluss	ISO 11926	1 1/16-12UN-2B; 20 tief	280	0
S	Sauganschluss	ISO 11926	1 5/16-12UN-2B; 20 tief	5	0
L ₁	Leckageanschluss	ISO 11926	9/16-18UNF-2B; 13 tief	10	O ⁶⁾
L ₂	Leckageanschluss	ISO 11926	9/16-18-18UNF-2B; 13 tief	10	X ₆)
X	Steuersignal	ISO 11926	7/16-20UNF-2B; 12 tief	280	O ⁷⁾

Anschluss und Befestigungsgewinde Ausführung "M"

Anschlüsse		Norm ⁴⁾	Größe ³⁾	p _{max abs} [bar] ⁵⁾	Zustand ⁸⁾
В	Arbeitsanschluss	ISO 6149	M33 × 2; 20 tief	280	0
s	Sauganschluss	ISO 6149	M42 × 2; 20 tief	5	0
L ₁	Leckageanschluss	ISO 6149	M18 × 1.5; 13 tief	10	O ⁶⁾
L ₂	Leckageanschluss	ISO 6149	M18 × 1.5; 13 tief	10	X ₆)
х	Steuersignal	ISO 6149	M12 × 1.5; 12 tief	280	O ⁷⁾

Evolventenverzahnung nach ANSI B92.1a, 30° Eingriffswinkel, abgeflachter Lückengrund, Flankenzentrierung, Toleranzklasse 5

²⁾ Gewinde nach ASME B1.1

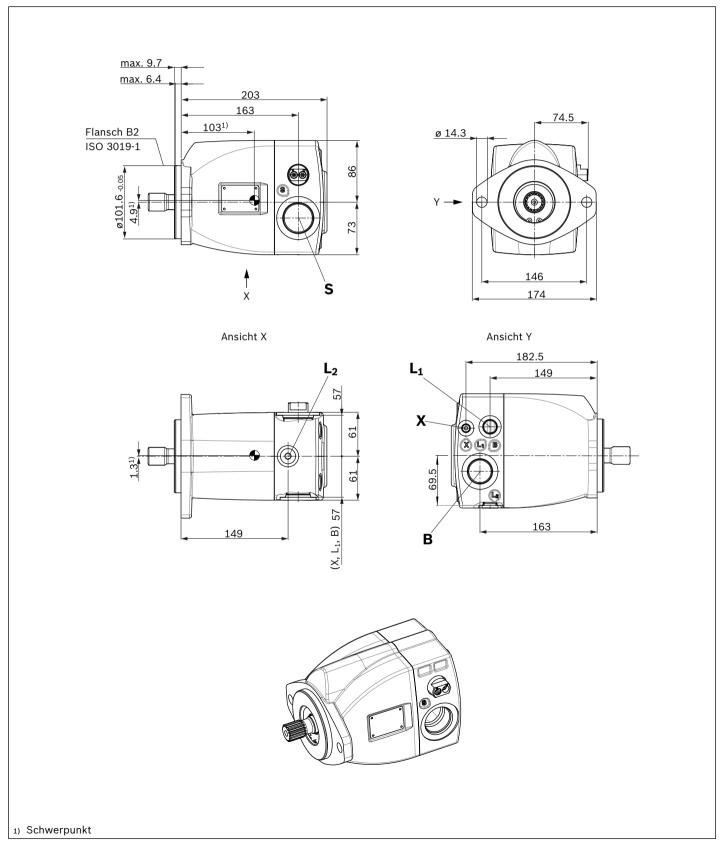
³⁾ Für die maximalen Anziehdrehmomente sind die "Projektierungshinweise" auf Seite 22 zu beachten.

⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.

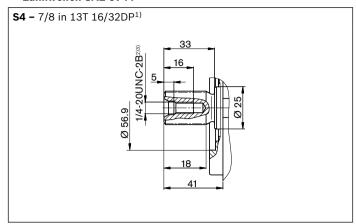
⁵⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.

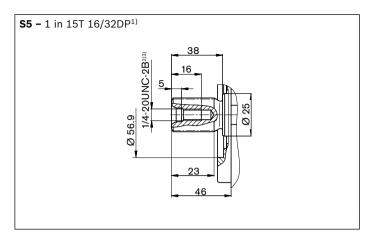
⁶⁾ Abhängig von der Einbaulage muss L_1 oder L_2 angeschlossen werden (siehe auch Einbauhinweise auf Seite 20).

⁷⁾ Nur wenn SO-Regler vorhanden.


 ⁸⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

Abmessungen Nenngröße 35


DR, DN - Druckregler / DRS0, DNS0 - Druckregler mit Load-Sensing


Drehrichtung rechts

14

▼ Zahnwellen SAE J744

Anschluss und Befestigungsgewinde Ausführung "B"

Anschlüsse		Norm ⁴⁾	Größe ³⁾	p _{max abs} [bar] ⁵⁾	Zustand ⁸⁾
В	Arbeitsanschluss	ISO 11926	1 5/16-12UN-2B; 20 tief	280	0
s	Sauganschluss	ISO 11926	1 5/8-12UN-2B; 20 tief	5	0
L ₁	Leckageanschluss	ISO 11926	3/4-16UNF-2B; 15 tief	10	O ₆₎
L ₂	Leckageanschluss	ISO 11926	3/4-16UNF-2B; 15 tief	10	X ⁶⁾
X	Steuersignal	ISO 11926	7/16-20UNF-2B; 12 tief	280	O ⁷⁾

Anschluss und Befestigungsgewinde Ausführung "M"

Anschlüsse		Norm ⁴⁾	Größe ³⁾	p _{max abs} [bar] ⁵⁾	Zustand ⁸⁾
В	Arbeitsanschluss	ISO 6149	M33 × 2; 20 tief	280	0
S	Sauganschluss	ISO 6149	M42 × 2; 20 tief	5	0
L ₁	Leckageanschluss	ISO 6149	M18 × 1.5; 13 tief	10	O ⁶⁾
L ₂	Leckageanschluss	ISO 6149	M18 × 1.5; 13 tief	10	X ₆)
X	Steuersignal	ISO 6149	M12 × 1.5; 12 tief	280	O ⁷⁾

Hinweis

Verwenden Sie bei allen Anschlüssen, im Besonderen beim Anschluss **S**, die für die Norm vorgesehenen Einschraubzapfen mit entsprechender Schlüsselweite. Bei größerer Schlüsselweite bitte Rücksprache.

Evolventenverzahnung nach ANSI B92.1a, 30° Eingriffswinkel, abgeflachter Lückengrund, Flankenzentrierung, Toleranzklasse 5

²⁾ Gewinde nach ASME B1.1

³⁾ Für die maximalen Anziehdrehmomente sind die "Projektierungshinweise" auf Seite 22 zu beachten.

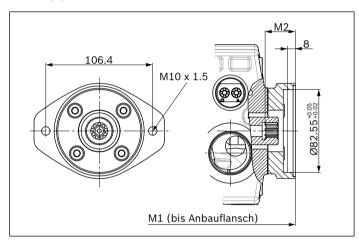
⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.

⁵⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.

 $_{6)}$ Abhängig von der Einbaulage muss L_{1} oder L_{2} angeschlossen werden (siehe auch Einbauhinweise auf Seite 20).

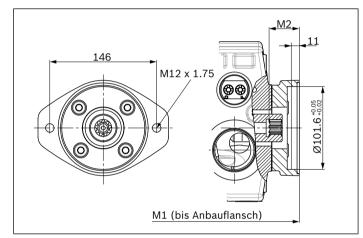
⁷⁾ Nur wenn SO-Regler vorhanden.

 ⁸⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)


Abmessungen Durchtriebe

Flansch SAE J744			Nabe f	Nabe für Zahnwelle ¹⁾			Verfügbarkeit NG		
Durchmesser	Anbau ²⁾	Bezeichnung	Durchr	nesser	Bezeichnung	018	028	035	
82-2 (A)	0-0	A2	5/8 in	9T 16/32 DP	S2	•	0	•	A2S2
			3/4 in	11T 16/32 DP	S3	•	0	•	A2S3
			7/8 in	13T 16/32 DP	S4	•	0	•	A2S4
101-2 (B)	0-0	B2	7/8 in	13T 16/32 DP	S4	•	0	•	B2S4
			1 in	15T 16/32 DP	S5	_	_	•	B2S5

• = Lieferbar • = Auf Anfrage - = Nicht Lieferbar


▼ 82-2 (A)

16

Kurz- bez.	NG	M1	M2	
A2S2	018	203.2	32	
	028	203.2	32	
	035	227.6	32	
A2S3	018	203.2	38	
	028	203.2	38	
	035	227.6	38	
A2S4	018	203.2	41	
	028	203.2	41	
	035	227.6	41	

▼ 101-2 (B)

Kurz- bez.	NG	M1	M2
B2S4	018	203.2	41
	028	203.2	41
	035	227.6	41
B2S5	035	227.6	46

Nach ANSI B92.1a, 30° Eingriffswinkel, abgeflachter Lückengrund, Flankenzentrierung, Toleranzklasse 5

²⁾ Anordnung Befestigungsbohrungen bei Blick auf Durchtrieb, mit Anschluss für Arbeitsleitung B rechts.

³⁾ Durchgehendes Gewinde nach DIN 13, für die maximalen Anziehdrehmomente sind die "Projektierungshinweise" auf Seite 22 zu beachten.

Übersicht Anbaumöglichkeiten

Durchtrie	b ¹⁾		Anbaumöglich	Anbaumöglichkeit – 2. Pumpe						
Flansch	Nabe für Zahnwelle	Kurz- bez.	A1VO/10 NG (Welle)	A4VG/32 NG (Welle)	A10VG/10 NG (Welle)	A10VO/52/53 NG (Welle)	A10VNO/52/53 NG (Welle)	A10V(S)O/31 NG (Welle)	Außen- zahnrad- pumpe ²⁾	
82-2 (A)	5/8 in	A2S2	18, 28 (S2)	-	_	10 (U), 18 (U)	+	18 (U)	Baureihe F	
	3/4 in	A2S3	18, 28 (S3)	-	-	10 (S), 18 (S, R)	28 (R)	18 (S, R)	_	
101-2 (B)	7/8 in	B2S4	35 (S4)	-	18 (S)	28 (S, R)	-	28 (S, R)	Baureihe N Baureihe G	
	1 in	B2S5	35 (S5)	28 (S)	28 (S)	_	-	-	-	

¹⁾ Weitere Durchtriebe auf Anfrage

²⁾ Bosch Rexroth empfiehlt spezielle Ausführungen der Außenzahnradpumpen. Bitte Rücksprache.

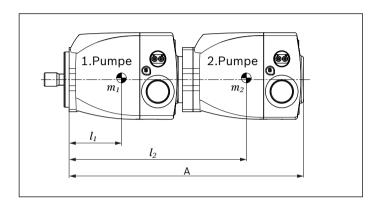
Kombinationspumpen A1VO + A1VO

Gesamtlänge A

18

A1VO (1. Pumpe)	A1VO (2. Pumpe)				
	NG18	NG35			
NG18	375	_			
NG35	403.3	431			

Durch den Einsatz von Kombinationspumpen stehen dem Anwender auch ohne Verteilergetriebe voneinander unabhängige Kreisläufe zur Verfügung.


Bei Bestellung von Kombinationspumpen sind die Typbezeichnungen der 1. und der 2. Pumpe durch ein "+" zu verbinden.

Bestellbeispiel:

A1VO035DRS0C100/10BRVB2S51B2S500+ A1VO035DRS0C100/10BRVB2S51000000

Die Tandempumpe aus zwei gleichen Nenngrößen ist unter Berücksichtigung einer dynamischen Massenbeschleunigung von maximal 10~g (= $98.1~m/s^2$) ohne zusätzliche Abstützungen zulässig.

Bei Kombinationspumpen aus mehr als zwei Pumpen ist eine Berechnung des Anbauflansches auf das zulässige Massenmoment erforderlich.

m_1, m_2	Masse der Pumpe	[kg]	
$l_1, l_2,$	Schwerpunktabstand	[mm]	
T (m v 1	1	[Name]	
$T_m = (m_1 \times l_1)$	$+m_2 \times l_2) \times {102}$	— [Nm]	

Zulässige Massenmomente

Nenngröße			18	35
statisch		Nm	500	890
dynamisch bei 10 g (98,1 m/s²)	T_m	Nm	50	89
Gewicht ohne Durchtriebsplatte (z.B. 2. Pumpe)		kg	11.5	18.4
Gewicht mit Durchtriebsplatte			12.2	19.8
Schwerpunktabstand ohne Durchtrieb l_1 mm		93	100	
Schwerpunktabstand mit Durchtrieb l_1 mm		99	108	

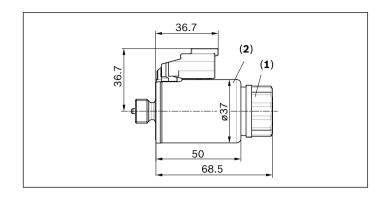
Stecker für Magnete

Stecker für Magnete

DEUTSCH DT04-2P-EP04

Angegossen, 2-polig, ohne bidirektionale Löschdiode Bei montiertem Gegenstecker ergibt sich folgende Schutzart:

- ▶ IP67 (DIN/EN 60529) und
- IP69K (DIN 40050-9)


▼ Schaltsymbol

▼ Gegenstecker DEUTSCH DT06-2S-EP04

Bestehend aus	DT-Bezeichnung
1 Gehäuse	DT06-2S-EP04
1 Keil	W2S
2 Buchsen	0462-201-16141

Der Gegenstecker ist nicht im Lieferumfang enthalten. Dieser kann auf Anfrage von Bosch Rexroth geliefert werden (Materialnummer R902601804).

Steckerposition ändern

Bei Bedarf können Sie die Lage des Steckers durch Drehen des Magnetkörpers verändern.

Gehen Sie dazu folgendermaßen vor:

- ▶ Lösen Sie die Befestigungsmutter (1) des Magneten. Drehen Sie dazu die Befestigungsmutter (1) eine Umdrehung nach links.
- ▶ Drehen Sie den Magnetkörper (2) in die gewünschte Lage.
- ▶ Ziehen Sie die Befestigungsmutter wieder an. Anziehdrehmoment: 5+1 Nm. (Schlüsselweite SW26, 12kt DIN 3124)

Im Lieferzustand kann die Lage des Steckers von der Prospekt- bzw. Zeichnungsdarstellung abweichen.

Einbauhinweise

Allgemeines

Die Axialkolbeneinheit muss bei Inbetriebnahme und während des Betriebes mit Druckflüssigkeit gefüllt und entlüftet sein. Dies ist auch bei längerem Stillstand zu beachten, da sich die Axialkolbeneinheit über die Hydraulikleitungen entleeren kann.

Besonders bei der Einbaulage "Triebwelle nach oben/ unten" ist auf eine komplette Befüllung und Entlüftung zu achten, da z. B. die Gefahr des Trockenlaufens besteht. Die Leckage im Gehäuseraum muss über den höchstgelegenen Tankanschluss (**L**₁, **L**₂) zum Tank abgeführt werden. Bei Kombinationen von mehreren Einheiten muss an jeder Pumpe die Leckage abgeführt werden.

Wird für mehrere Einheiten eine gemeinsame Leckageleitung verwendet, ist darauf zu achten, dass der jeweilige Gehäusedruck nicht überschritten wird. Die gemeinsame Leckageleitung muss so dimensioniert werden, dass der maximal zulässige Gehäusedruck aller angeschlossenen Einheiten in keinem Betriebszustand, insbesondere beim Kaltstart, überschritten wird. Ist das nicht möglich, so müssen gegebenenfalls separate Leckageleitungen verlegt werden.

Um günstige Geräuschwerte zu erzielen, sind alle Verbindungsleitungen über elastische Elemente abzukoppeln und Übertankeinbau zu vermeiden.

Die Saug- und Leckageleitungen müssen in jedem Betriebszustand unterhalb des minimalen Flüssigkeitsniveaus in den Tank münden. Die zulässige Saughöhe h_S ergibt sich aus dem Gesamtdruckverlust, darf jedoch nicht höher als $h_{S\,max}$ = 800 mm sein. Der minimale Saugdruck am Anschluss **S** von 0.8 bar absolut darf auch im Betrieb und bei Kaltstart nicht unterschritten werden.

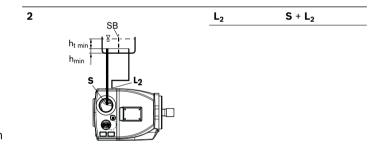
Sorgen Sie bei der Tankauslegung für ausreichenden Abstand zwischen Saugleitung und Leckageleitung. Dadurch wird für eine Ölberuhigung und Entgasung gesorgt und verhindert, dass die erwärmte Druckflüssigkeit direkt wieder angesaugt wird.

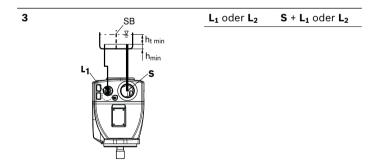
Hinweis

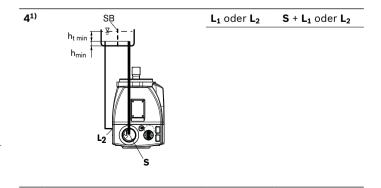
In bestimmten Einbaulagen ist mit Beeinflussungen der Verstellung oder Regelung zu rechnen. Bedingt durch die Schwerkraft, das Eigengewicht und den Gehäusedruck können geringe Kennlinienverschiebungen und Stellzeit-Veränderungen auftreten.

Einbaulage

Siehe folgende Beispiele 1 bis 11.

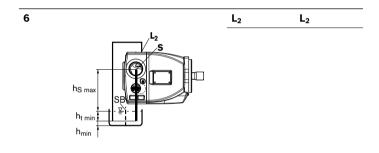

Weitere Einbaulagen sind nach Rücksprache möglich.

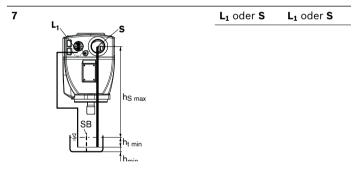

Empfohlene Einbaulage: 1 und 2

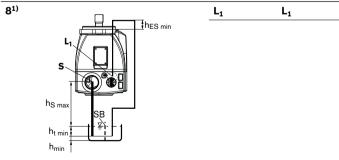

Untertankeinbau (Standard)

Untertankeinbau liegt vor, wenn die Axialkolbeneinheit unterhalb des minimalen Flüssigkeitsniveaus außerhalb des Tanks eingebaut ist.

Einbaulage	Entlüften	Befüllen
1 SB	L ₁	S + L ₁
	h _{t r} h _m	

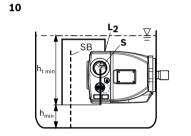

¹⁾ Da ein vollständiges Entlüften und Befüllen in dieser Lage nicht möglich ist, sollte die Pumpe vor dem Einbau in horizontaler Lage entlüftet und befüllt werden.

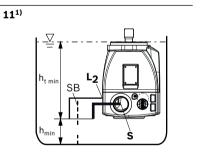

Übertankeinbau


Übertankeinbau liegt vor, wenn die Axialkolbeneinheit oberhalb des minimalen Flüssigkeitsniveaus des Tanks eingebaut ist. Um ein Entleeren der Axialkolbeneinheit zu verhindern ist bei Position 8 eine Höhendifferenz h_{ES min} von mindestens 25 mm einzuhalten.

Beachten Sie die maximal zulässige Saughöhe h_{S max} = 800 mm.

Einbaulage	Entlüften	Befüllen
5 L ₁	L ₁	L ₁
SB hs,		
⊺ h _{mi}		




Tankeinbau

Tankeinbau liegt vor, wenn die Axialkolbeneinheit unterhalb des minimalen Flüssigkeitsniveaus im Tank eingebaut ist. Die Axialkolbeneinheit ist vollständig unter Druckflüssigkeit. Wenn minimaler Flüssigkeitsspiegel gleich oder unterhalb der Pumpenoberkante, siehe Kapitel "Übertankeinbau". Axialkolbeneinheiten mit elektrischen Bauteilen (z. B. elektrische Verstellungen, Sensoren) dürfen nicht in einem Tank unterhalb des Flüssigkeitsniveaus eingebaut werden.

Einbaulage	Entlüften	Befüllen
9 SB h _{t min}	Über den höchstgele- genen An- schluss L 1	Über den geöffneten Anschluss L ₁ automatisch durch Lage unter Druckflüssigkeitsspiegel

Über den höchstgelegenen Anschluss **L**₂ Über den geöffneten Anschluss L₂ automatisch durch Lage unter Druckflüssigkeitsspiegel

Legende	
L ₁ , L ₂	Befüllen / Entlüften
s	Sauganschluss
SB	Beruhigungswand (Schwallblech)
h _{t min}	Minimal erforderliche Eintauchtiefe (200 mm)
h _{min}	Minimal erforderlicher Abstand zum Tankboden (100 mm)
h _{ES min}	Minimal erforderliche Höhe zum Schutz vor Entleerung der Axialkolbeneinheit (25 mm)
h _{S max}	Maximal zulässige Saughöhe (800 mm)

¹⁾ Da ein vollständiges Entlüften und Befüllen in dieser Lage nicht möglich ist, sollte die Pumpe vor dem Einbau in horizontaler Lage entlüftet und befüllt werden.

Projektierungshinweise

- ► Die Verstellpumpen A1VO ist für den Einsatz im offenen Kreislauf vorgesehen.
- ▶ Die Projektierung, Montage und Inbetriebnahme der Axialkolbeneinheit setzen den Einsatz von geschulten Fachkräften voraus.
- ► Lesen Sie vor dem Einsatz der Axialkolbeneinheit die zugehörige Betriebsanleitung gründlich und vollständig. Fordern Sie diese gegebenenfalls bei Bosch Rexroth an.
- ► Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern.
- ▶ Die angegebenen Daten und Hinweise sind einzuhalten.
- Abhängig vom Betriebszustand der Axialkolbeneinheit (Betriebsdruck, Flüssigkeitstemperatur) können sich Verschiebungen der Kennlinie ergeben.
- ▶ Konservierung: Standardmäßig werden unsere Axialkolbeneinheiten mit einem Konservierungsschutz für maximal 12 Monate ausgeliefert. Wird ein längerer Konservierungsschutz benötigt (maximal 24 Monate) ist dies bei der Bestellung im Klartext anzugeben. Die Konservierungszeiten gelten unter optimalen Lagerbedingungen, welche dem Datenblatt 90312 oder der Betriebsanleitung zu entnehmen sind.
- ▶ Das Produkt ist nicht in allen Ausführungsvarianten für den Einsatz in einer Sicherheitsfunktion gemäß ISO 13849 freigegeben. Wenn Sie Zuverlässigkeitskennwerte (z. B. MTTF_d) zur funktionalen Sicherheit benötigen, wenden Sie sich an den zuständigen Ansprechpartner bei Bosch Rexroth.
- ▶ Beim Einsatz von Elektromagneten können sich in Abhängigkeit von der verwendeten Ansteuerung elektromagnetische Einflüsse ergeben. Elektromagnete verursachen bei Bestromung mit Gleichstrom keine elektromagnetischen Störungen und deren Betrieb wird nicht durch elektromagnetische Störungen beeinträchtigt. Ein anderes Verhalten kann sich bei Bestromung mit moduliertem Gleichstrom (z. B. PWM-Signal) ergeben. Eine mögliche elektromagnetische Beeinflussung für Personen (z. B. mit Herzschrittmacher) und andere Komponenten muss durch den Maschinenhersteller geprüft werden.

- ► Druckregler sind/Druckabscheidung ist keine Absicherungen gegen Drucküberlastung.In der Hydraulikanlage ist ein Druckbegrenzungsventil vorzusehen.
- Arbeitsanschlüsse:
 - Die Anschlüsse und Befestigungsgewinde sind für den angegebenen Höchstdruck ausgelegt. Der Maschinen- bzw. Anlagenhersteller muss dafür sorgen, dass die Verbindungselemente und Leitungen den vorgesehenen Einsatzbedingungen (Druck, Volumenstrom, Druckflüssigkeit, Temperatur) mit den notwendigen Sicherheitsfaktoren entsprechen.
 - Die Arbeits- und Funktionsanschlüsse sind nur für den Anbau von hydraulischen Leitungen vorgesehen.

Sicherheitshinweise

- ▶ Während und kurz nach dem Betrieb besteht an der Axialkolbeneinheit und besonders an den Magneten Verbrennungsgefahr. Geeignete Sicherheitsmaßnahmen vorsehen (z. B. Schutzkleidung tragen).
- ▶ Bewegliche Teile in Steuer- und Regeleinrichtungen (z. B. Ventilkolben) können unter bestimmten Umständen durch Verschmutzungen (z. B. unreine Druckflüssigkeit, Abrieb oder Restschmutz aus Bauteilen) in nicht definierter Stellung blockieren. Dadurch folgt der Druckflüssigkeitsstrom bzw. der Momentenaufbau der Axialkolbeneinheit nicht mehr den Vorgaben des Bedieners. Selbst der Einsatz von verschiedenen Filterelementen (externe oder interne Zulauffilterung) führt nicht zum Fehlerausschluss, sondern lediglich zur Risikominimierung. Der Maschinen-/Anlagenhersteller muss prüfen, ob für die jeweilige Anwendung Abhilfemaßnahmen an der Maschine notwendig sind, um den angetriebenen Verbraucher in eine sichere Lage zu bringen (z. B. sicherer Stopp) und ggf. deren sachgerechte Umsetzung sicherstellen.

24

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com © Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns. Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.